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Monogenic autoinflammatory disorders are an increasingly heterogeneous group of condi-
tions characterised by innate immune dysregulation. Improved genetic sequencing in recent
years has led not only to the discovery of a plethora of conditions considered to be ‘autoin-
flammatory’, but also the broadening of the clinical and immunological phenotypic spectra
seen in these disorders. This review outlines the classification strategies that have been em-
ployed for monogenic autoinflammatory disorders to date, including the primary innate im-
mune pathway or the dominant cytokine implicated in disease pathogenesis, and highlights
some of the advantages of these models. Furthermore, the use of the term ‘autoinflamma-
tory’ is discussed in relation to disorders that cross the innate and adaptive immune divide.
The utilisation of next-generation sequencing (NGS) in this population is examined, as are
potential in vivo and in vitro methods of modelling to determine pathogenicity of novel ge-
netic findings. Finally, areas where our understanding can be improved are highlighted, such
as phenotypic variability and genotype–phenotype correlations, with the aim of identifying
areas of future research.

Introduction
The phrase ‘autoinflammatory disease’ was proposed as an alternative to ‘autoimmune disease’ by Mc-
Dermott et al. [1] in the paper identifying the genetic cause of Tumour Necrosis Factor (TNF) Receptor
Associated Periodic Syndrome (TRAPS). This was considered a suitably representative term at the time,
as individuals with inherited periodic fever syndromes had innate immune dysregulation but lacked high
titres of autoantibodies and self-reactive T cells [1]. Familial Mediterranean Fever (FMF) was the only
genetically defined periodic fever syndrome prior to this publication and the clinical and biochemical
features appeared to be well defined [2,3].

Since this time, over 30 conditions have been added to the list of monogenic autoinflammatory disor-
ders. The significant broadening of clinical features, pathway perturbations and genes involved bring into
question the utility of the original definition of these disorders, and whether an alternative is required
that better encapsulates the spectrum of immune dysregulation seen. Highlighting the complexity of this
task, the list of conditions considered ‘autoinflammatory’ by the International Union of Immunological
Societies (IUIS) is incongruent with the Infevers database, a registry of mutations associated with autoin-
flammatory disorders maintained by the International Society for Systemic Autoinflammatory Diseases
(ISSAID) (Figure 1) [4,5].

Classification
The term inflammasomopathy was introduced in the first review of autoinflammatory disorders cate-
gorising conditions based on the pathway implicated in disease pathogenesis [6], including disorders af-
fecting inflammasomes, the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) pathway,
the complement system, protein folding, ‘cytokine signalling’ and those resulting in or from macrophage
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Figure 1. Genes involved in monogenic autoinflammatory disorders

Genes involved in monogenic autoinflammatory disorders according to ISSAID as listed in the Infevers database, compared with

the IUIS.

activation. Since this time, a number of reviews have adopted a briefer version, with both inflammasome or inter-
leukin (IL)-1β mediated disorders and NF-κB pathway-associated disorders universally included, but the other cate-
gories far less frequently [7]. The term ‘interferonopathies’ was first used to describe a group of monogenic disorders
characterised by increased type I interferon (IFN) signalling in 2011 [8] but these disorders were only grouped with
autoinflammatory disorders by the IUIS in 2017 [4]. No rationale for this change was provided, preventing a unified
strategy of classification to be adopted those researching and managing these conditions.

The pathway model
The pathway model has the advantage of highlighting possible targets for treatment downstream of an abnormal pro-
tein, as with Janus kinase (JAK) inhibitors for individuals with stimulator of IFN genes (STING)-associated vascu-
lopathy with onset in infancy (SAVI), as well as possible candidate genes for autoinflammatory disorders, such as that
encoding a member of the linear ubiquitin assembly complex (LUBAC), SHARPIN. There are, however, limitations
to this classification. A clear example is the case of mutations in TNFRSF1A causing TRAPS. While TNF receptor 1
(TNFR1) is a key receptor in the NF-κB pathway, the disease is not necessarily caused by increased signalling through
this pathway alone [1,9-13]. A number of pathogenic mechanisms have been explored, such as defective shedding of
TNFR1 [1], retention of TNFR1 in cytoplasmic aggregates with reduced surface expression [11], and abnormal apop-
tosis and signalling [12].

This classification also neglects the complex interaction between signalling pathways that exist. NF-κB transloca-
tion to the nucleus is important for the expression of pro-IL-1β and NOD-like receptor (NLR) pyrin domain con-
taining 3 (NLRP3), and the consequence of NF-κB dysfunction on inflammasome activation cannot be discounted.
Key players in the regulation of NF-κB are also implicated in the regulation of NLRP3, as seen with A20 and the
possible role of inflammasome activation in the inflammatory manifestations of haploinsufficiency of A20 (HA20)
[14]. Furthermore, although not yet shown in human cells, transforming growth factor (TGF)-β activated kinase-1
(TAK1) has been shown to regulate NLRP3, with spontaneous NLRP3 activation documented in TAK1-deficient
murine macrophages [15]. The NF-κB and IFN pathways are also intimately linked, with a number of sensors leading
to activation of both pathways. In the case of SAVI, literature to date suggests that the IFN pathway is dysregulated
in this syndrome [16,17], but whether these two pathways are actually uncoupled in the case of an overactive STING
in vivo is unclear. Breeding mutant STING mice to Irf3−/− mice did not rescue the inflammatory phenotype, raising
questions, at least in the murine model, of the role of IFN regulatory transcription factor (IRF) 3 in the inflamma-
tion associated with SAVI [18]. Furthermore, the role of NF-κB as a member of the IFN-β enhanceosome [19], a
multicomponent complex that optimises transcriptional activation of IFN-β, suggests that the pathways are closely
connected.
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The cytokine model
An alternative classification strategy is based on the primary cytokine dysregulated, either increased or decreased,
in individuals with autoinflammatory disorders [20]. This is of potential therapeutic benefit as the primary cy-
tokine driving disease can be therapeutically targeted. An example of this is the treatment of individuals with
cryopyrin-associated periodic syndrome (CAPS). In the original manuscript linking Neonatal Onset Multisystem
Inflammatory Disease (NOMID) to mutations in NLRP3, cell lysates from unstimulated monocytes of a case had
high pro-IL-1β expression as determined by Western blot, and increased IL-1β mRNA in unstimulated peripheral
blood mononuclear cells (PBMCs) when compared with healthy controls [21]. The empiric treatment of two cases
with recombinant IL-1 receptor antagonist and the rapid resolution of symptoms within hours, and inflammatory
markers within days, highlighted the role of IL-1β in the disease pathogenesis [22]. Having said this, the detection
of IL-1β in serum of cases is difficult, with both cases and healthy controls having levels below the detection limit
of currently available assays. Most publications looking at the IL-1β levels and response to treatment in individuals
with CAPS culture PBMCs and measure cytokine release over a 24-h period. The spontaneous secretion of IL-1β
by CAPS PBMCs decreases with the initiation of IL-1β-targeted therapy [23]. From this it is clear that even without
elevated serum levels, a therapeutic response to IL-1β neutralising therapy suggests that this cytokine is important
[23,24]. The response of individuals with colchicine-resistant FMF [25], mevalonate kinase deficiency (MKD) [26],
and TRAPS [27] to the neutralising anti-IL-1β antibody canakinumab, suggests that IL-1β is a key cytokine in all of
these disorders. Supporting this is evidence of increased expression of IL1B and IL1R1 as determined by microarray
in individuals with TRAPS [28]. The gene expression profile of TRAPS moved towards the healthy control profile with
canakinumab treatment [27]. More recently, the randomised, double-blind, placebo-controlled study of canakinumab
in the above groups demonstrated efficacy in controlling and preventing disease flares [29]. An interesting addition to
the literature was a retrospective analysis by Savic et al., of individuals with undifferentiated systemic autoinflamma-
tory disorders who were treated with anakinra [30]. A total of 11 cases were identified over a 3-year period, and nine
responded completely to treatment with anakinra within 4–6 weeks of commencement. Although individuals had
undergone Sanger sequencing for NLRP3, MEFV, TNFRSF1A and NOD2 with no pathogenic mutations detected,
the marked response to treatment suggests that genes in the IL-1β pathway could be further interrogated for variants
that may be causing disease. Conversely, subjects could undergo a broader approach with whole exome sequencing
(WES) or whole genome sequencing (WGS) and novel genes involved in the IL-1β pathway may be revealed.

Evaluation of the major cytokine/s involved in monogenic autoinflammatory disorders may point to distinctions
between conditions within the same pathway. The gain of function mutations in inflammasome forming proteins
that lead to disease can be presumed to cause an increase in IL-1β processing and release. Mutations in NLRC4 that
result in an autoinflammatory phenotype are associated with markedly increased serum free IL-18 levels in cases
when compared with healthy controls and individuals with CAPS [31,3233].

There are also conditions that may involve pathways distinct from those used to categorise autoinflammatory dis-
orders in the literature. Through the study of autosomal recessive generalised pustular psoriasis (GPP) in a number of
multiplex families, Marrakchi et al. [34] identified homozygous missense mutations in IL36RN, which encodes the
IL-36 receptor antagonist (IL-36Ra), causing deficiency in IL-36Ra (DITRA). IL-36 is a member of the IL-1 family of
cytokines and, like IL-1β, acts via its receptor IL-36R and, in concert with IL-1 receptor accessory protein (IL1RAcP),
signals to NF-κB through myeloid differentiation primary response 88 (MyD88). The binding of IL-36Ra to IL-36R
prevents the association of IL1RAcP and downstream signalling. While there have been four case reports of the suc-
cessful treatment of DITRA with anakinra therapy [35-38], therapeutic benefit has also resulted from TNF inhibition
[39-41], IL-17 inhibition with secukinumab [42] and IL-12/IL-23 inhibition with ustekinumab [43-45]. This suggests
that these agents may be targeting cytokines that are downstream of IL-36 [38]. The possibility of developing a ther-
apeutic agent that is specific for IL-36 has been explored. Mbow et al. characterised a mouse anti-human antibody
(MAB92) with high affinity to the IL-36 receptor that blocks signalling through this pathway [46]. Although highly
specific for human IL-36R, the authors created MAB04, which cross-reacts with murine IL-36R for in vivo studies.
Importantly, MAB04 inhibited imiquimod- and IL-36-induced skin inflammation in mice.

Deficiency in regulatory cytokines have also been described, and the clinical course of these individuals has been tu-
multuous. Homozygous mutations in IL10, IL10RA or IL10RB, leading to deficiencies in IL-10, IL-10Rα or IL-10Rβ
respectively, have been reported to cause monogenic early onset inflammatory bowel disease (EOIBD) [47,48]. IL-10
has regulatory effects on the inflammatory response which are mediated through signal transducer and activator of
transcription (STAT) 3, with IL-10-deficient mice developing chronic enterocolitis [49-51]. PBMCs from cases with
loss of function of these proteins had higher proinflammatory cytokine responses to lipopolysaccharide (LPS) stim-
ulation, including IL-6, TNF and IL-1β, when compared with healthy controls [48]. Although multiple agents have
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been trialled in these cases including corticosteroids, azathioprine, methotrexate, cyclosporine A and anti-TNF ther-
apy, only mild clinical benefit has resulted [52]. A number of cases have undergone allogenic haemopoetic stem cell
transplantation (HSCT) with marked improvement in their inflammatory bowel disease [52,53]. While recombinant
human IL-10 replacement (rhuIL-10) in individuals with IL-10 deficiency would seem to be a therapeutic option,
there have been issues with the response to and side effects from rhuIL-10 in trials of individuals with Crohn’s disease
[54]. Furthermore, this option would not be effective in individuals with mutations in IL10RA or IL10RB. At this
point in time, HSCT is the only curative option.

A number of other conditions are presumed to result from dysregulation of a particular pathway because of their
cytokine profile, but little is known about the steps that lead to this alteration. Proteasome-associated autoinflam-
matory syndrome (PRAAS) is an autosomal recessive autoinflammatory disorder that encompasses conditions pre-
viously considered distinct entities: Nakajo-Nishimura syndrome (NKJO), joint contractures, muscular atrophy, mi-
crocytic anaemia, and panniculitis-induced lipodystrophy syndrome (JMPS), as well as chronic atypical neutrophilic
dermatosis with lipodystrophy and elevated temperature syndrome (CANDLE). Three publications identified mu-
tations in PSMB8, the β5i catalytic component of the immunoproteasome, as the cause of disease [55-57]. Indi-
viduals with homozygous loss of function mutations in PSMB8 experienced spontaneous febrile episodes with fea-
tures of muscle weakness, lipodystrophy as well as neutrophilic and lymphocytic infiltrative skin nodules and evi-
dence of cerebral calcification [55-57]. Homozygous mutations were associated with poor proteasome assembly as
well as reduced chymotrypsin-like activity and accumulation of ubiquitinated proteins in either Epstein–Barr virus
(EBV)-transformed B cells or immortalised lymphoblastoid cell lines from cases [55-57]. In these early papers, in-
creased serum IL-6 was noted in all cases, but the role of IFN was only identified later [58]. Liu et al. noted an al-
most 80-fold increase in IFN-γ-inducible protein 10 (IP-10) in cases compared with healthy controls and individuals
with CAPS, prompting whole blood microarray analysis to determine the gene signature of these cases. The IFN
pathway was the most differentially regulated pathway in individuals with PRAAS, further supported by stronger
STAT1 phosphorylation in response to IFN-γ stimulation of monocytes when compared with healthy controls. These
authors also highlighted cases with the clinical phenotype of PRAAS without PSMB8 mutations, later explored by
Goldbach-Mansky et al. [59]. Digenic mutations involving PSMA3 or PSMB4 and PSMB8 or PSMB9, encoding con-
stitutive proteasome subunits α7 and β7 or inducible subunits β5i and β1i respectively, were found in cases with the
clinical diagnosis of PRAAS. One individual harboured a compound heterozygous mutation in PSMB4, and another
a heterozygous mutation in POMP, encoding proteasome maturation protein. Similar to earlier reports, the mutant
subunits were not efficiently assembled into the proteasome, resulting in reduced proteolytic activity. When com-
pared with cases with homozygous PSMB8 mutations, the chymotrypic proteolytic activity was less impaired, but
deficiencies were noted in tryptic and caspase proteolytic activity. Similar to homozygous PSMB8 mutations, there
was inefficient clearing of ubiquitinated proteins and the presence of a type I IFN gene signature. Both siRNA models
and proteasome inhibitors were used to recapitulate the IFN signature in PBMCs and fibroblasts. However, the mech-
anism/s by which proteasomal dysfunction leads to this response remains elusive. Classifying PRAAS by its IFN gene
signature guides potential treatment considerations and also opens avenues for researchers to determine the role of
the immunoproteasome in the IFN pathway.

Clarifying the dominant cytokine or pathway implicated in disease may lead to the development of targeted ther-
apeutic strategies for autoinflammatory conditions, as reviewed in recent publications [60,61]. Recent work has
looked at individuals with interferonopathies treated with JAK1/2 inhibitor baricitinib. Initial work was performed by
Goldbach-Mansky et al. to determine a dosing regimen for paediatric cases with interferonopathies [62]. This work
was then extended with treatment of a number of individuals with interferonopathies including PRAAS and SAVI and
longitudinal assessment of response and adverse reactions [63]. Most patients were able to reduce their prednisolone
requirements and five out of ten PRAAS cases achieved remission. Adverse events included upper respiratory infec-
tions, gastroenteritis and BK viremia. Given that only 18 patients were recruited over a span of 6 years, more work
is needed to establish the clinical efficacy and adverse reaction profile in this selected population. The availability of
this drug on compassionate grounds through NCT01724580 suggests that more information will become available in
the future with ongoing recruitment and follow-up of these cases.

Similarly, elucidating elevated serum free IL-18 levels in an individual with autoinflammation with infantile entero-
colitis, an NLRC4-associated autoinflammatory disease, lead to the successful therapeutic trial of a recombinant IL-18
binding protein (rhIL-18) [64]. Following from this, there is a Phase 3 randomised, double-blind, placebo-controlled
trial of rhIL-18 in NLRC4-associated autoinflammatory diseases (NCT03113760) as well as an open-label extension
(NCT03512314) underway. This not only highlights the importance of identifying driver or dominant cytokines for
possible therapeutic manipulation, but also the potential differences between inflammasome effector and regulatory
mechanisms as well as possible epigenetic factors, that results in one cytokine dominating over another.
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Autoinflammation, autoimmunity and immune deficiency
The boundaries of what is classified as an autoinflammatory disorder are also being blurred. The strict definition of
innate immune dysregulation without self-reactive T cells or high titres of autoantibodies is increasingly in question,
especially when one considers interferonopathies such as Aicardi–Goutieres syndrome (AGS). AGS was originally
described in the 1980s as a disorder of the central nervous system (CNS) associated with lymphocytosis on cere-
brospinal fluid analysis and bilateral basal ganglia calcifications [65]. The genetic causes of AGS are numerous, and
all involve the processing of nucleic acid, either self or foreign, in the cytoplasm. Loss of function mutations in genes
encoding deoxyribonuclease three prime repair exonuclease 1 (TREX1) [66], deoxynucleoside triphosphate triphos-
phohydrolase SAM and HD domain containing protein 1 (SAMHD1) [67], ribonuclease components ribonuclease H2
(RNASEH2) A (RNASEH2A), RNASEH2B or RNASEH2C [68], or adenosine deaminase acting on RNA 1 (ADAR1)
[69] have been identified in individuals with AGS. The link between AGS and autoimmunity was initially made when
Aicardi and Goutières speculated that the phenotype of two individuals with infantile systemic lupus erythematosus
overlapped AGS considerably. They hypothesised that the two may be either the same condition or linked by an in-
crease in IFN-α [70]. The phenotypic link has subsequently been highlighted by a number of groups [71,72], although
the number of subjects in a large cohort of 374 mutations confirmed that AGS with clinically diagnosed lupus was low
[73]. An abnormal serum autoantibody profile was seen in a minority of individuals with AGS in one cohort study
[74], however another detected persistent antinuclear antibodies (ANA) or autoantibodies against extractable nuclear
antigens (ENA), dsDNA and cardiolipin in the majority of their cases with mutation confirmed AGS [72]. Subsequent
work using multiplex autoantibody microarrays identified unique autoantibodies in cases with AGS [75]. Whether
this condition, and indeed other interferonopathies, should be considered autoimmune or autoinflammatory is a
matter of debate. AGS highlights that this distinction is not always clear.

Indeed, the spectrum of immune dysregulation and overlap between autoimmunity, autoinflammation and im-
mune deficiencies has been seen in a number of recently described conditions. Homozygous loss of function mu-
tations in HOIL1 or HOIP have been described in cases with evidence of systemic inflammation, susceptibility to
pyogenic infections, and amylopectinosis [76,77]. The original description by Boisson et al. highlighted the impor-
tance of haem-oxidised IRP2 ubiquitin ligase 1 (HOIL1) in maintaining the stability of the LUBAC, involved in the
ubiquitination of components in the NF-κB pathway, as well as promoting the association of inhibitor of NF-κB
kinase subunit γ (IKKγ) with TNF or IL-1 receptor signalling complexes [76]. The authors noted cell-type specific
defects associated with HOIL1 deficiency. Fibroblasts and EBV-immortalised B cells from subjects displayed impaired
canonical NF-κB pathway activation in response to TNF or IL-1β as well as partial impairment of the response to
toll-like receptor (TLR) stimuli. The inflammatory phenotype was determined to originate from monocytes, with
monocytes displaying hyper-responsiveness to IL-1β in terms of inflammatory cytokines produced compared with
healthy control monocytes. The clinical and cellular phenotypes in the HOIL1-deficient cases overlap with those seen
in an individual with homozygous loss of function mutations in HOIP [77]. The publication of a series of ten cases
from eight families with polyglucosan storage myopathy harbouring either homozygous or compound heterozygous
mutations in HOIL1 [78] suggests that mutations in this gene, and potentially other components of LUBAC, may
also present with a more limited clinical phenotype, and that much remains to be learnt about genotype–phenotype
correlations in these disorders.

Classifying these as autoinflammatory diseases inherently fails to acknowledge the associated immunodeficiency,
and vice versa. A similar problem concerns the conditions caused by mutations in PLCG2 encoding phospholipase
c γ-2 (PLCγ2), PLCγ2-associated antibody deficiency and immune dysregulation (PLAID) and autoinflammation
and PLAID (APLAID) [79,80]. PLCγ2 was linked to autoimmune and autoinflammatory diseases initially through
an N-ethyl-N-nitrosourea (ENU) mutagenesis screen [81]. A heterozygous point mutation in PLCG2 in mice led to
spontaneous inflammation, arthritis and dermatitis with evidence of immune complex driven glomerulonephritis.
Subsequently, by sequencing three families with dominantly inherited cold-induced urticaria, antibody deficiency
and autoimmunity, in-frame deletions in PLCG2 were identified and shown to segregate with disease [79]. These
deletions affected the autoinhibitory C-terminal Src-homology 2 domain and resulted in constitutive phospholipase
activity. Interestingly, and somewhat contradictory to the increased activity of PLCγ2, B cells and natural killer (NK)
cells demonstrated reduced calcium flux and reduced phosphorylation of mitogen-activated protein kinase (MAPK)
in response to stimulation with either IgM cross-linking or cross-linking of activating receptors respectively. This
was determined to be temperature specific, however, with increasing MAPK pathway phosphorylation and cytoso-
lic calcium in response to decreasing temperatures. This description was quickly followed by one of a family with
a dominantly inherited autoinflammatory condition who had a missense mutation in PLCG2. Unlike the previous
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report, the individuals had no evidence of autoimmunity, but did have hypogammaglobulinaemia and markedly re-
duced class switched memory B cells in addition to inflammatory manifestations in the form of skin inflammation
and granulomata, enterocolitis, bronchiolitis and uveitis [80]. Of the two cases described, neither had cold-induced
symptoms. Increased baseline PLCγ2 activity was noted in an overexpression COS-7 cell model. Chae et al. [82] pro-
gressed the understanding of the inflammatory manifestations of APLAID by showing that the increased activity of
PLCγ2 and subsequent increase in inositol and release of Ca2+ from ER stores, previously established by Kurosaki and
Tsukada [83], resulted in increased NLRP3 activation and IL-1β release when assessing PBMCs from cases compared
with healthy controls. It would be interesting to determine whether the same increase in NLRP3-driven IL-1β is seen
when PBMCs from PLAID subjects are examined, as their inflammatory phenotype was not as profound, and was
temperature dependent. Furthermore, the partial response to IL-1β-targeted therapy [80] suggests that there may be
more than NLRP3 driving the inflammatory disease.

Clearly, more information is needed to tease out the different immunological consequences of mutations in PLCG2.
This is, of course, not unique to this autoinflammatory disease. With the description of rare disorders and involve-
ment of novel genes and mutations, one can expect the phenotypic spectrum to evolve as more cases are reported. In
the case of deficiency of adenosine deaminase 2 (DADA2), homozygous loss of function mutations in CECR1 were
found in individuals with polyarteritis nodosa [84] as well as early onset stroke, vasculopathy and febrile episodes [85].
Although immunodeficiency and autoimmunity were not a major feature, IgM deficiency was noted in a number of
cases [85]. Treatment of ten individuals with TNF targeting therapy by Levy-Lahad et al. led to significant clinical im-
provement, highlighting the role of this cytokine in disease pathogenesis [84]. The response to TNF directed therapy
has since been reproduced [86,87]. In a subsequent study of 48 cases with polyarteritis nodosa associated with livedo
reticularis and/or strokes, Gattorno et al. performed Sanger sequencing of CECR1 and determined that 15 cases
harboured homozygous or compound heterozygous mutations [88]. Since the time of the original description, there
has been an expansion of the clinical phenotype of cases with DADA2, from cytopaenias and pure red cell aplasia
[89], to lymphoproliferative disease [90-92], and combined immune deficiency, as well as common variable immune
deficiency (CVID) [93]. Indeed, a cohort study of 181 cases with antibody deficiency diagnosed 11 individuals with
mutation and enzyme activity confirmed DADA2 [94]. An interesting finding in this group was that anti-TNF ther-
apy resulted in an improvement in IgM levels in one case, and there was an inverse correlation between c-reactive
protein (CRP) and IgG in another. Further complicating the potential mechanisms of this disease, individuals with
DADA2 have also been reported to have an IFN gene signature [95,96]. Researchers investigated individuals with
features overlapping with AGS-5 (caused by mutations in SAMHD1). In each report, cases had enhanced IFN stim-
ulated gene expression. These cases were treated with a range of immunosuppressive agents but had not been trialled
on anti-TNF therapy. Given the reports of profound response in individuals with DADA2 to this therapy, it would be
interesting to determine whether the IFN gene signature is abrogated with the use of anti-TNF therapy.

Furthermore, a number of conditions classified as disorders of predominantly antibody deficiency by the IUIS have
marked autoinflammatory features. The syndrome of sideroblastic anemia with B-cell immunodeficiency, periodic
fevers and developmental delay (SIFD) was first described by Wiseman et al. in 2013 [97], with 11 out of the 12 cases
described experiencing periodic fevers. It was subsequently determined to be caused by homozygous or compound
heterozygous mutations in TRNT1 [98], encoding the CCA-adding enzyme tRNA nucleotidyltransferase [99]. Aksen-
tijevich et al. investigated the inflammatory phenotype of these cases, noting markedly elevated acute phase reactants
and inflammatory cytokines in cases with active disease [100]. The authors documented reduced expression of ma-
ture cytosolic tRNA, as well as increased reactive oxygen species when corrected for live cells in fibroblasts after 72 h
compared with healthy controls. Using an siRNA knockdown THP-1 cell model, TRNT1-knockdown cells demon-
strated increased IL-1β production at baseline and in response to LPS which was reversed with the small molecule
NLRP3 inhibitor MCC950, suggesting an NLRP3-dependent inflammatory phenotype.

Autoinflammatory disease classification summary
From the above discussion, it is apparent that there are significant barriers to a simple definition or classification
criteria for what are considered monogenic autoinflammatory disorders. As research progresses, the inflammatory
component of disorders previously considered to be primarily of immune deficiency or autoimmunity will become
more apparent. Provided in Figure 2 is a summary of conditions listed as autoinflammatory disorders in the latest
IUIS Expert Committee for Primary Immunodeficiency (2017) as well as the Infevers database, documenting the
spectrum of immunological manifestations recognised to date.
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Table 1 Monogenic autoinflammatory disorder summary table (Continued)

Condition Gene/s Protein MOI GOF/LOF Pathway
Cytokine
group

System
involved Human cell model Potential murine model Reference/s

PLAID PLCG2 PLCγ2 AD GOF Unknown Unknown Multiple COS7, A20 cells: transfection model. Mutants- ↑phospholipase activity at
subphysiological temperatures
LAD2 mast cells: transfection of mutant → spontaneous degranulation at
20◦C
B cells and NK cells: ↓ERK phosphorylation in response to stimulation
T cells: normal response to CD3 cross-linking

Multiple* [79]

PRAAS PSMB8,
PSMB9,
PSMB4,
PSMA3,
POMP

PSMB8,
PSMB9,
PSMB4,
PSMA3,
POMP

AR LOF ?NF-κB
?IFN

T1IFN Multiple HeLa cells: Transfection studies show poor formation of proteasome with
mutant c/w WT
Primary fibroblasts: ↑ precursor complexes in patients. siRNA
knockdown in control cells → IFN induction and proteasome dysfunction
Lymphoblastoid cell line: ↑ precursor complexes, ↓ proteasome
formation
EBV transformed B cells: generally, ↓ chymotryptic like activity
Primary keratinocytes: Ubiquitin aggregation

Lmp7−/− mice [59,214]

PRP CARD14 CARD14 AD GOF NF-κB Skin HEK293T cells: NF-κB luciferase assay
Immortalised primary keratinocytes: Expression + NF-κB activity

Nil [215,216]

Pustular
psoriasis

AP1S3 AP1S3 AR LOF ?NF-κB IL36
IL-1

Skin Primary keratinocytes and dermal fibroblasts: abnormal autophagy,
accumulation of p62. Abnormal TLR2/6 signalling

Nil [217,218]

SAVI TMEM173 STING AD GOF IFN T1IFN Multiple
incl
lungs,
vessels

HEK293T cells: IFNB1 reporter assay. Immunoblot analysis of STING
pathway
CD4, CD8 T cells, CD19 B cells: constitutive STAT1 phosphorylation
PBMC and dermal fibroblasts: ↑ IFNB1 transcription at rest. No change
with cGAMP exposure. Transcription of TNF and IL-6 ↑ at baseline and
with cGAMP treatment

StingN153S/+ mice [16-18]

SPENCD ACP5 ACP5 AR LOF IFN T1IFN Multiple Primary human macrophages: colocalisation studiesPlasmacytoid
dendritic cells: co-localisation studies. TLR9 stimulation in shRNA ACP5
knockdown studies → ↑ transcription ISGs
HEK293T cells: cotransfection TRAP and osteopontin followed by
immunoprecipitation
THP1 cells: shRNA ACP5 knockdown studies → ↑ phosphorylation of
osteopontin

Acp5−/− mice [219-222]

TRAPS TNFRS1A TNFR1 AD Unknown NF-κB ?IL-1β Multiple PBMC: ↑surface expression TNFR1 + ↓shedding (conflicting data)
Monocytes: ↑surface expression TNFR1 and ↓shedding; Abnormal
autophagy →↑IL-1β + NF-κB activation
Dermal fibroblasts: Mutant TNFR1 ↓ receptor shedding
Neutrophils: Mutant TNFR1 abnormal retention in cytoplasm
HEK293T cells: minor differences in receptor shedding when TNFR1 WT
or mutant overexpressed; Cytoplasmic retention and reduced surface
expression of mutant

Tnfrsf1aT50M/+ mice
(13)
Tnfrsf1aC33Y/+ mice
(232)
Tnfrsf1ap55deltNS mice
(10)

[1,9-11,13,223-232]

USP18
deficiency

USP18 USP18 AR LOF IFN T1IFN CNS
Liver

Primary dermal fibroblasts: ↑ transcription ISG after IFN stimulation.
Persistent STAT2 phosphorylation. No sig difference in IL-6 response to
IL-1β or poly(I:C) .↑ISGylation

Usp18−/− mice* [233]

XLPDR POLA1 POLA1 XLR LOF IFN >

NF-κB
T1IFN Multiple Primary dermal fibroblasts: ↑IFN + NF-κB response to stimulation with

poly(da:dt) or TNF; ↑IRF and NF-κB pathway activation; ↓RNA:DNA levels;
Lentiviral transduction of WT rescued phenotype
Fibroblast and HeLa cell line: siRNA POLA1 knockdown → ↑ IFN +
NF-κB response to stimulation with poly(da:dt) or TNF

Nil [234]

Abbreviations: AD, autosomal dominant; AIADK, autoinflammation with arthritis and dyskeratosis; AID, autoinflammatory disorder; AIFEC, autoinflammation with infantile
enterocolitis; AILJK, autoimmune interstitial lung, joint and kidney disease; AR, autosomal recessive; BLCL, EBV-transformed B-lymphoblastoid cell lines; c/w, compared
with; CD, cluster of differentiation; COPA, coatomer subunit α; DIRA, deficiency of IL-1 receptor antagonist; ER, endoplasmic reticulum; FCAS2, familial cold autoinflam-
matory syndrome 2; GIT, gastrointestinal tract; GOF, gain of function; HIDS, hyper IgD syndrome, HYDM1, hydatidiform molar pregnancy; Inflam, inflammasome; ISG,
IFN-stimulated gene; LOF, loss of function; MOI, mode of inheritance; MSPC, multiple self-healing palmoplantar carcinoma; NFATc1, nuclear factor of activated T cell,
cytoplasmic 1; ORAS, otulin-related autoinflammatory syndrome; PAAND, pyrin-associated autoinflammation with neutrophilic dermatosis; POLA, DNA polymerase α

catalytic subunit; PRP, pityriasis rubra pilaris; SMS, Singleton–Merten syndrome; SPENCD, spondyloenchondrodysplasia; T1IFN, type 1 IFN; XLPDR, x-linked pigmentary
disorder, reticulate, with systemic manifestations.
*Murine model prior to the description of monogenic condition.
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Figure 2. Phenotypic spectrum of monogenic autoinflammatory disorders

Abbreviations: AIADK, autoinflammation with arthritis and dyskeratosis; AID, autoinflammatory disorder; AIFEC, autoinflammation

with infantile enterocolitis; AILJK, autoimmune interstitial lung, joint and kidney disease; DIRA, deficiency of IL-1 receptor antag-

onist; FCAS2, familial cold autoinflammatory syndrome 2; HIDS, hyper IgD syndrome; HYDM1, hydatidiform molar pregnancy;

MSPC, multiple self-healing palmoplantar carcinoma; ORAS, otulin-related autoinflammatory syndrome; PAAND, pyrin-associ-

ated autoinflammation with neutrophilic dermatosis; PAPA, pyogenic arthritis, pyoderma gangrenosum and acne; PRP, pityriasis

rubra pilaris, SPENCD, spondyloenchondrodysplasia; XLPDR x-linked pigmentary disorder, reticulate, with systemic manifesta-

tions. #Susceptibility.

Genetic sequencing of autoinflammatory disorders
The phenotypic heterogeneity of what is considered a monogenic autoinflammatory disorder, as well as the explosion
in the number of newly described conditions, coincides with advances in genetic sequencing techniques. The gene
mutated in FMF was determined to be MEFV using positional cloning methods in 1997, and since this time many
more disease-causing genes have been recognised (Figure 3). Next-generation sequencing (NGS) technology has
been used in the description of these conditions since 2012, starting with the identification of RBCK1 as the gene
implicated in HOIL1 deficiency [76].

NGS
The now widely adopted NGS, also known as massive parallel or deep sequencing, is a broad term encompassing a
number of different technologies that share the ability to generate and analyse millions of sequences per run. There
are a large number of platforms on which NGS can be performed, and the specifics of the sequencing method varies
depending on the instrument used [102]. In general, the sequencing process involves the preparation of a library
of short DNA fragments through either enzymatic or sonication techniques. These short strands of DNA are then
ligated to generic adapters in vitro. PCR amplification follows, performed using either emulsion PCR in oil–water
emulsion micelles, or bridge PCR on a solid surface coated with complementary primers. Subsequent sequencing of
the amplicon is performed by either pyrosequencing, sequencing by ligation or sequencing by synthesis. The large
number of short reads generated from this process must then be aligned against a reference sequence. A plethora of
software have been developed not only to align the reads, but to also determine where deviations from a reference
sequence exist. Furthermore, considering that WES or WGS of an individual identifies 20000 or 4000000 variants

1910 c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY-NC-ND).
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Figure 3. Timeline of monogenic autoinflammatory disorder discovery and genetic sequencing technique used

Abbreviations: AIADK, autoinflammation with arthritis and dyskeratosis; AIFEC, autoinflammation with infantile enterocolitis; AILJK,

autoimmune interstitial lung, joint and kidney disease; DIRA, deficiency of IL-1 receptor antagonist; Dysreg, dysregulation (includ-

ing lymphoproliferation); FCAS2, familial cold autoinflammatory syndrome 2; HIDS, hyper IgD syndrome; HYDM1, hydatidiform

molar pregnancy; MSPC, multiple self-healing palmoplantar carcinoma; ORAS, otulin-related autoinflammatory syndrome; PAAND,

pyrin-associated autoinflammation with neutrophilic dermatosis; PAPA pyogenic arthritis, pyoderma gangrenosum and acne; RAAS,

proteasome associated autoinflammatory syndrome; PRP, pityriasis rubra pilaris; SPENCD, spondyloenchondrodysplasia; XLPDR,

x-linked pigmentary disorder, reticulate, with systemic manifestations. Adapted and updated from [101] with permission granted

by Springer Nature, licence number: 4371831027106.

respectively, an appropriate filtering strategy must be employed to determine which of these variants are potentially
pathogenic [103,104].

NGS has been employed in the diagnostic evaluation of individuals with autoinflammatory disorders. Ceccherini
et al. compared the performance of three NGS platforms in a pilot study interrogating 10 genes (MEFV, MVK, TN-
FRSF1A, NLRP3, NLRP12, NOD2, PSTPIP1, IL1RN, LPIN2 and PSMB8) from 50 cases with genetically confirmed
autoinflammatory disorders [105]. The expected mutations were correctly called in most cases, although there was
a failure to detect p.Val377Ile MVK in a number of cases due to low coverage. Additional variants were also noted,
a number of which were false positives and detected on only one of the three platforms used. Importantly, true pos-
itive incidental variants did not alter the clinical diagnosis or management of the individual. Taking a different ap-
proach, Nakayama et al. [106] prospectively recruited individuals with a clinical diagnosis of an autoinflammatory
disorder prior to any genetic testing. Using an MiSeq platform developed in house, they sequenced 9 genes (IL1RN,
MEFV, MVK, NLRP12, NLRP3, NOD2, PSMB8, PSTPIP1 and TNFRSF1A) in 108 cases. A total of 27 missense
mutations were identified and confirmed with Sanger sequencing. Unfortunately, the authors did not outline any
genotype–phenotype correlation, nor did they include positive controls to ensure that all pathogenic mutations were
detected. A further addition to the literature was by Omoyinmi et al. [107] with their development of a vasculitis and
inflammation panel targeting up to 166 genes. Initially, 16 samples with known pathogenic mutations were analysed
and the best performing pipeline carried over to the assessment of individuals with unknown diagnosis. Pathogenic
mutations were detected in 12% of cases, and likely pathogenic variants in 22%. Furthermore, the depth of coverage
was sufficient to be able to detect a 3% somatic mosaicism in NLRP3.

Somatic mosaicism
Somatic mosaicism in NLRP3 causing disease was first described in 2005 in an individual with a p.Tyr507Cys variant
occurring at a frequency of 16.7% detected using Sanger sequencing [108]. Somatic mosaicism in NLRP3 has since
been reported by multiple groups with a mutation frequency as low as 2.7% noted [109-116]. Importantly, a recent
study highlighted that NGS was able to detect somatic NLRP3 mutations in eight individuals symptomatic of CAPS
who had previously tested negative for mutations in NLRP3 sequencing using Sanger techniques [116]. Retrospective
review of the Sanger chromatogram identified small peaks in only three of the eight cases, each with an allele frequency

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY-NC-ND).
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of greater than 10%, suggesting that Sanger sequencing is not a sensitive technique for detecting low frequency somatic
mosaicism.

Autoinflammatory genetics summary
While the use of NGS panels for the diagnosis of autoinflammatory disorders in the clinical setting is increasing,
the key limitation from a research perspective is the inability to discover new disease-causing genes. In using WES
or WGS, novel variants in genes known to cause disease, and also variants in novel genes, may be uncovered. The
rationale for the use of WES is based on the finding that the majority of pathogenic variants causing Mendelian
diseases that have been identified to date are located in protein-coding regions [117-119]. While WGS has the benefit
of capturing introns and intergenic regions, and detecting copy number variants [104], a large volume of data must be
interrogated, and the bioinformatics analysis is complex. Both strategies raise the possibility of detecting an incidental
finding that has implications for the health of the individual and their family. Furthermore, neither method negates
the requirement for the validation of pathogenicity of a novel variant.

Modelling monogenic autoinflammatory disorders
Modelling genetic findings experimentally is of great importance in determining the clinical significance of a novel
variant. In recent years, many groups have taken advantage of clustered regularly interspaced short palindromic re-
peats (CRISPR)/Cas9 gene editing techniques. CRISPR/Cas9 gene editing utilises features of an adaptive immune
response seen in bacteria and archaea.

CRISPR approaches for functional validation
CRISPR/Cas9 techniques have improved the ability to create models of diseases caused by point mutations. Previ-
ously, creating point mutations in mice would require homologous recombination in embryonic stem cells, a lengthy
and expensive process to generate a homozygous mouse strain [120]. In vivo editing with CRISPR/Cas9 has allowed
for genome editing of fertilised mouse eggs [121,122]. Briefly, plasmids with DNA encoding the editing tools, in-
cluding the guide RNA and Cas9, are injected into the cytoplasm of a one-cell embryo, generating a target-specific
double-strand break (DSB). The subsequent repair of this break is mediated by non-homologous end joining (NHEJ)
or homology directed repair (HDR). The former often results in frameshift mutations and loss of function. HDR,
on the other hand, can result in substitutions, insertions or deletions if the one-cell embryo is co-injected with a
single-strand oligonucleotide (ssOligo) that acts as a template. Soon after this technique was first published, the effi-
ciency of gene disruption by frameshift mutations through NHEJ using this method was reported to be approximately
80–90% whereas introducing a point mutation through HDR is approximately 50–80% [122,123].

Introduction of point mutations in human cells using CRISPR/Cas9 techniques has also been described. Early
reports of CRISPR/Cas9 editing in HEK293T cells demonstrated NHEJ efficiency of up to 33% [124-127], but HDR
efficiency of only 3–8% [126]. Improved efficacy was noted through cell synchronisation techniques that control the
timing of delivery of single guide RNA (sgRNA) and ssOligo to HEK293T cells, with HDR in up to 38% of cells [128].
Various strategies have also been employed in an attempt to improve efficiency in cells that are difficult to nucleofect,
a process by which components of the editing system are delivered to the nucleus of the target cell, including the
use of a ssDNA template provided by recombinant adeno-associated virus (rAAV) [129,130]. The process, however,
remains less efficient than NHEJ and its widespread application in research is still limited.

A significant recent addition to the literature has been the description ‘base editors’, able to create point mutations in
human cell lines without generating a DSB. In the initial descriptions, a catalytically dead Cas9 was fused to a cytidine
deaminase enzyme, with the unit guided to a locus of interest with an sgRNA [131,132]. This complex allowed for
a targeted C•G to T•A substitution in human and murine cell lines in up to 40% of total sequencing reads, with a
maximum base editing yield possible of 50%. Subsequent base editors have included the adaptation of tRNA adenosine
deaminase to edit DNA, allowing for A•T to G•C conversion [133]. The significance of this development in the
potential for disease modelling and future gene editing was highlighted by the correction of the c.845G>A HFE
mutation implicated in hereditary haemochromatosis in an immortalised-lymphoblastoid cell line [133]. Despite the
difficulty with which these cells are transfected, an efficiency rate of 28% was noted, with no off-target effects. Similar
to the process of CRISPR/Cas9 with HDR, this technique is not yet used widely. However, significant advances in
a short period of time suggests that either may become a routine method for modelling diseases caused by point
mutations.

1912 c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
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Autoinflammatory disease models using mice
In vivo murine models have provided great insight into disease pathology given genetic homologies between humans
and mice and the ability to create transgenic, knockout and knockin mice. For example, the initial murine model of
CAPS published in 2009 by Hoffman et al. recapitulated the IL-1β-mediated inflammation [134]. Furthermore, a
number of teams have used murine models to explore the skeletal consequences of CAPS [135,136]. More recently,
the generation of Nlrp3 mutant mice on Il1b/Il18, casp-1/casp-11 or Tnf -deficient backgrounds raised the possible
role of TNF in CAPS disease pathology [137]. There are, however, shortcomings here. The recent attempt to model
LPS-responsive and beige-like anchor protein (LRBA) deficiency using Lrba−/− mice, which in humans cause a range
of manifestations including autoimmunity, hypogammaglobulinaemia, organomegaly and chronic diarrhoea [138],
failed to recapitulate the clinical or immunological phenotype [139,140]. Furthermore, differences between murine
and human pyrin led to many years of work predicated on pyrin as anti-inflammatory, rather than an inflammasome
forming protein. Modelling of disorders that act through the pyrin pathway, such as Pyogenic Arthritis, Pyoderma
gangrenosum and Acne (PAPA) syndrome caused by mutations in PSTPIP1 may thus be similarly problematic. Ad-
ditionally, humanised mouse models, using immunodeficient mice engrafted with human haematopoietic cells, are
useful in the study of haematopoiesis, but have been limited in the investigation of the innate immune system due to
quantificative and functional deficiencies of a number of cells including monocytes and macrophages [141].

Autoinflammatory subject derived induced pluripotent stem cells
An alternative method of modelling autoinflammatory disorders is the use of subject-derived induced pluripotent
stem cells (iPSCs). This method of reprogramming somatic cells to pluripotency [142] allows for indefinite propaga-
tion as well as differentiation to a variety of human cell types that would previously have been unobtainable [143-145].
Saito et al. utilised this method in the investigation of autoinflammatory disorders involving NLRP3 [146] and NLRC4
[147]. Two individuals with somatic mutations in NLRP3 had both wild-type (WT) and mutant NLRP3 iPSC lines
generated [146]. The WT iPSC lines served as a comparator, with the authors able to determine that only macrophages
differentiated from mutant NLRP3 iPSC lines showed abnormal IL-1β secretion. A subsequent publication generated
iPSC lines from an individual suspected of CAPS but without pathogenic mutations in NLRP3 [147]. Heterogeneous
responses to LPS stimulation in the iPSC clones prompted WES, with clones having a robust response to LPS pos-
sessing a mutation in NLRC4. Subsequent deletion of NLRC4 using CRISPR/Cas9 techniques in the mutant clones
abrogated the enhanced response to stimulation, indicating that the mutation was likely pathogenic. As the frequency
of the mutation was later determined to be approximately 63%, WES would most likely have identified this as a can-
didate variant of interest. Furthermore, despite its promise, the generation of a cell line from case samples demands
expertise, as well as specific ethical considerations. It also requires access to case samples which may be difficult in
the case of critically ill individuals who succumb to disease prior to genetic evaluation.

Having said this, the use of these cells has the potential to overcome a significant limitation in the modelling of
autoinflammatory disorders to date. Using either the genetic manipulation of healthy iPSCs or subject-derived iP-
SCs, it is possible to explore the effect of a genetic mutation on a variety of cell types. For example, in our recent
paper exploring a novel NLRC4 variant, THP-1 monocyte like cells were used to model and the variant was deter-
mined to be pathogenic [31]. iPSCs would have permitted exploration of the effect of this variant on NK cells and T
cells, allowing for addressing questions that remain unanswered including the pathogenesis of macrophage activation
syndrome in this population. Likewise, the use of iPSCs differentiated to keratinocytes would allow interrogation of
mechanisms of the dermatological manifestations in specific autoinflammatory disorders. As summarised in Table 1,
most monogenic autoinflammatory disorders described to date have not had immunological assessment of multiple
cell types.

Future directions and questions
Questions remain in the field about the phenotype–genotype correlation as well as phenotypic variability of individ-
uals with a specific genetic variant. This includes disorders of ‘variable penetrance’. There are alternative explanations
for differing phenotypes among cases with the same genetic variant. One consideration is the presence of another
genetic variant that affects disease presentation. A true digenic disorder requires the inheritance of a distinct het-
erozygous mutation in two genes that, when inherited separately, do not cause a phenotype [235,236]. The broader
term of epistasis refers to possible interactions between genes [237]. Determining genetic epistasis is complex and
requires an appropriate pedigree, which includes more than one gene mutated in a single pedigree, a range of genetic
permutations and at least one member with WT alleles in both genes [238,239].
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Another possible explanation for the phenotypic heterogeneity among cases is epigenetic differences. Epigenetic
processes such as DNA methylation, histone modifications, chromatin remodelling and non-coding RNAs can alter
the activity of a gene without changing the DNA sequence. For example, a transcriptionally active gene has minimal
DNA methylation and an open chromatic structure. Monozygotic and dizygotic twin studies of concordance have
been used for some time to determine the contribution of a particular genotype to phenotype [240]. More recently,
this has been combined with methods of quantifying epigenetic changes. In a study of monozygotic twins disconcor-
dant for the clinical diagnosis of CVID, a DNA methylation array performed on CD19+ B cells revealed that both
switched and unswitched memory B cells of the twin with CVID had higher DNA methylation in genes relevant to
B-cell function [241]. This finding highlights that epigenetic factors could account for phenotypic variations. There
have been two publications assessing DNA methylation in individuals with monogenic autoinflammatory disorders,
but in each case the diseased population was compared with a healthy control [242,243]. Vento-Tormo et al. [243]
assessed the DNA methylation status of genes encoding various components of the inflammasome in monocytes of
cases with CAPS and compared this with healthy controls. They noted that genes such as IL1B, IL1RN and ASC
were demethylated more efficiently in CAPS monocytes when compared with healthy controls, a feature that nor-
malised when individuals were treated with anti-IL1 therapy. Determining the epigenetic factors contributing to the
phenotypic variability of a particular genotype is not simple. With a small number of cases, one possible approach is
to compare the methylation status of genes potentially involved in the phenotype observed. An alternative approach
is genome-wide DNA methylation profiling [244]. However, drawing conclusions from only a few individuals with
different genetic backgrounds may not be feasible.

Exploring factors that can account for this phenotypic variability may provide insight into the pathways involved in
disease. Furthermore, the comprehensive genetic evaluation and investigation of various immune and non-immune
cells of individuals with these conditions will likely enlighten the field to the intimate link between the innate and
adaptive immune system as well as the role of ‘innate immune’ proteins in non-immune cells.
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